3.331 \(\int \frac {(1+2 x^2+2 x^4)^{3/2}}{x^6 (3-2 x^2)} \, dx\)

Optimal. Leaf size=553 \[ \frac {262 \sqrt {2} \sqrt {2 x^4+2 x^2+1} x}{135 \left (\sqrt {2} x^2+1\right )}-\frac {262 \sqrt {2 x^4+2 x^2+1}}{135 x}+\frac {17}{27} \sqrt {\frac {17}{3}} \tanh ^{-1}\left (\frac {\sqrt {\frac {17}{3}} x}{\sqrt {2 x^4+2 x^2+1}}\right )+\frac {2^{3/4} \left (37+23 \sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {2 x^4+2 x^2+1}}+\frac {85\ 2^{3/4} \left (3-\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{189 \sqrt {2 x^4+2 x^2+1}}-\frac {262 \sqrt [4]{2} \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {2 x^4+2 x^2+1}}-\frac {289 \left (11-6 \sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} \Pi \left (\frac {1}{24} \left (12+11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{1134 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}-\frac {\left (40 x^2+3\right ) \sqrt {2 x^4+2 x^2+1}}{45 x^5}+\frac {74 \sqrt {2 x^4+2 x^2+1}}{135 x^3} \]

[Out]

17/81*arctanh(1/3*x*51^(1/2)/(2*x^4+2*x^2+1)^(1/2))*51^(1/2)+74/135*(2*x^4+2*x^2+1)^(1/2)/x^3-262/135*(2*x^4+2
*x^2+1)^(1/2)/x-1/45*(40*x^2+3)*(2*x^4+2*x^2+1)^(1/2)/x^5+262/135*x*(2*x^4+2*x^2+1)^(1/2)*2^(1/2)/(1+x^2*2^(1/
2))-262/135*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticE(sin(2*arctan(2^(1/4)*x)),1/2
*(2-2^(1/2))^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(2*x^4+2*x^2+1)^(1/2)-28
9/2268*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticPi(sin(2*arctan(2^(1/4)*x)),1/2+11/
24*2^(1/2),1/2*(2-2^(1/2))^(1/2))*(11-6*2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(
3/4)/(2*x^4+2*x^2+1)^(1/2)+85/189*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticF(sin(2*
arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(3-2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2
)*2^(3/4)/(2*x^4+2*x^2+1)^(1/2)+1/135*2^(3/4)*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*Elli
pticF(sin(2*arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(37+23*2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*
2^(1/2))^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.49, antiderivative size = 553, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {1309, 1271, 1281, 1197, 1103, 1195, 1311, 1216, 1706} \[ \frac {262 \sqrt {2} \sqrt {2 x^4+2 x^2+1} x}{135 \left (\sqrt {2} x^2+1\right )}-\frac {262 \sqrt {2 x^4+2 x^2+1}}{135 x}+\frac {74 \sqrt {2 x^4+2 x^2+1}}{135 x^3}-\frac {\left (40 x^2+3\right ) \sqrt {2 x^4+2 x^2+1}}{45 x^5}+\frac {17}{27} \sqrt {\frac {17}{3}} \tanh ^{-1}\left (\frac {\sqrt {\frac {17}{3}} x}{\sqrt {2 x^4+2 x^2+1}}\right )+\frac {2^{3/4} \left (37+23 \sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {2 x^4+2 x^2+1}}+\frac {85\ 2^{3/4} \left (3-\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{189 \sqrt {2 x^4+2 x^2+1}}-\frac {262 \sqrt [4]{2} \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {2 x^4+2 x^2+1}}-\frac {289 \left (11-6 \sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} \Pi \left (\frac {1}{24} \left (12+11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{1134 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + 2*x^2 + 2*x^4)^(3/2)/(x^6*(3 - 2*x^2)),x]

[Out]

(74*Sqrt[1 + 2*x^2 + 2*x^4])/(135*x^3) - (262*Sqrt[1 + 2*x^2 + 2*x^4])/(135*x) - ((3 + 40*x^2)*Sqrt[1 + 2*x^2
+ 2*x^4])/(45*x^5) + (262*Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(135*(1 + Sqrt[2]*x^2)) + (17*Sqrt[17/3]*ArcTanh[
(Sqrt[17/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/27 - (262*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqr
t[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(135*Sqrt[1 + 2*x^2 + 2*x^4]) + (85*2^(3/4)*(3 -
 Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 -
Sqrt[2])/4])/(189*Sqrt[1 + 2*x^2 + 2*x^4]) + (2^(3/4)*(37 + 23*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*
x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(135*Sqrt[1 + 2*x^2 + 2*x^4]) - (28
9*(11 - 6*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 + 11*Sqrt[2]
)/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(1134*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1216

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1271

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f
*x)^(m + 1)*(a + b*x^2 + c*x^4)^p*(d*(m + 4*p + 3) + e*(m + 1)*x^2))/(f*(m + 1)*(m + 4*p + 3)), x] + Dist[(2*p
)/(f^2*(m + 1)*(m + 4*p + 3)), Int[(f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2*a*e*(m + 1) - b*d*(m + 4*p
 + 3) + (b*e*(m + 1) - 2*c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c
, 0] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1309

Int[(((f_.)*(x_))^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Dist[
1/d^2, Int[(f*x)^m*(a*d + (b*d - a*e)*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Dist[(c*d^2 - b*d*e + a*e^2)/
(d^2*f^4), Int[((f*x)^(m + 4)*(a + b*x^2 + c*x^4)^(p - 1))/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -2]

Rule 1311

Int[(((f_.)*(x_))^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Dist[
1/(d*e), Int[(f*x)^m*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] - Dist[(c*d^2 - b*d*e + a*e^2)/(d*e*f
^2), Int[((f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1))/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Ne
Q[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, 0]

Rule 1706

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, -Simp[((B*d - A*e)*ArcTan[(Rt[-b + (c*d)/e + (a*e)/d, 2]*x)/Sqrt[a + b*x^2 + c*x^4]])/(2*d*e
*Rt[-b + (c*d)/e + (a*e)/d, 2]), x] + Simp[((B*d + A*e)*(A + B*x^2)*Sqrt[(A^2*(a + b*x^2 + c*x^4))/(a*(A + B*x
^2)^2)]*EllipticPi[Cancel[-((B*d - A*e)^2/(4*d*e*A*B))], 2*ArcTan[q*x], 1/2 - (b*A)/(4*a*B)])/(4*d*e*A*q*Sqrt[
a + b*x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (1+2 x^2+2 x^4\right )^{3/2}}{x^6 \left (3-2 x^2\right )} \, dx &=\frac {1}{9} \int \frac {\left (3+8 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{x^6} \, dx+\frac {34}{9} \int \frac {\sqrt {1+2 x^2+2 x^4}}{x^2 \left (3-2 x^2\right )} \, dx\\ &=-\frac {\left (3+40 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{45 x^5}+\frac {1}{45} \int \frac {-74-68 x^2}{x^4 \sqrt {1+2 x^2+2 x^4}} \, dx-\frac {17}{27} \int \frac {-2+6 x^2}{x^2 \sqrt {1+2 x^2+2 x^4}} \, dx+\frac {578}{27} \int \frac {1}{\left (3-2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {74 \sqrt {1+2 x^2+2 x^4}}{135 x^3}-\frac {34 \sqrt {1+2 x^2+2 x^4}}{27 x}-\frac {\left (3+40 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{45 x^5}-\frac {1}{135} \int \frac {-92-148 x^2}{x^2 \sqrt {1+2 x^2+2 x^4}} \, dx+\frac {17}{27} \int \frac {-6+4 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{189} \left (578 \left (2-3 \sqrt {2}\right )\right ) \int \frac {1+\sqrt {2} x^2}{\left (3-2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{189} \left (578 \left (3-\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {74 \sqrt {1+2 x^2+2 x^4}}{135 x^3}-\frac {262 \sqrt {1+2 x^2+2 x^4}}{135 x}-\frac {\left (3+40 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{45 x^5}+\frac {17}{27} \sqrt {\frac {17}{3}} \tanh ^{-1}\left (\frac {\sqrt {\frac {17}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )+\frac {289 \left (3-\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{189 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}-\frac {289 \left (11-6 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12+11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{1134 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {1}{135} \int \frac {148+184 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{27} \left (34 \sqrt {2}\right ) \int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{27} \left (34 \left (3-\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {74 \sqrt {1+2 x^2+2 x^4}}{135 x^3}-\frac {262 \sqrt {1+2 x^2+2 x^4}}{135 x}-\frac {\left (3+40 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{45 x^5}+\frac {34 \sqrt {2} x \sqrt {1+2 x^2+2 x^4}}{27 \left (1+\sqrt {2} x^2\right )}+\frac {17}{27} \sqrt {\frac {17}{3}} \tanh ^{-1}\left (\frac {\sqrt {\frac {17}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {34 \sqrt [4]{2} \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{27 \sqrt {1+2 x^2+2 x^4}}+\frac {85\ 2^{3/4} \left (3-\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{189 \sqrt {1+2 x^2+2 x^4}}-\frac {289 \left (11-6 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12+11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{1134 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}-\frac {1}{135} \left (92 \sqrt {2}\right ) \int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{135} \left (4 \left (37+23 \sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {74 \sqrt {1+2 x^2+2 x^4}}{135 x^3}-\frac {262 \sqrt {1+2 x^2+2 x^4}}{135 x}-\frac {\left (3+40 x^2\right ) \sqrt {1+2 x^2+2 x^4}}{45 x^5}+\frac {262 \sqrt {2} x \sqrt {1+2 x^2+2 x^4}}{135 \left (1+\sqrt {2} x^2\right )}+\frac {17}{27} \sqrt {\frac {17}{3}} \tanh ^{-1}\left (\frac {\sqrt {\frac {17}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {262 \sqrt [4]{2} \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {1+2 x^2+2 x^4}}+\frac {85\ 2^{3/4} \left (3-\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{189 \sqrt {1+2 x^2+2 x^4}}+\frac {2^{3/4} \left (37+23 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{135 \sqrt {1+2 x^2+2 x^4}}-\frac {289 \left (11-6 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12+11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{1134 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.24, size = 224, normalized size = 0.41 \[ -\frac {1572 x^8+1848 x^6+1116 x^4+192 x^2+(543-1329 i) \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} x^5 F\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )+786 i \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} x^5 E\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )-1445 (1-i)^{3/2} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} x^5 \Pi \left (-\frac {1}{3}-\frac {i}{3};\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )+27}{405 x^5 \sqrt {2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*x^2 + 2*x^4)^(3/2)/(x^6*(3 - 2*x^2)),x]

[Out]

-1/405*(27 + 192*x^2 + 1116*x^4 + 1848*x^6 + 1572*x^8 + (786*I)*Sqrt[1 - I]*x^5*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 +
 (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x], I] + (543 - 1329*I)*Sqrt[1 - I]*x^5*Sqrt[1 + (1 - I)*x^2]*Sq
rt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[1 - I]*x], I] - 1445*(1 - I)^(3/2)*x^5*Sqrt[1 + (1 - I)*x^2]*Sqrt
[1 + (1 + I)*x^2]*EllipticPi[-1/3 - I/3, I*ArcSinh[Sqrt[1 - I]*x], I])/(x^5*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

fricas [F]  time = 1.08, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (2 \, x^{4} + 2 \, x^{2} + 1\right )}^{\frac {3}{2}}}{2 \, x^{8} - 3 \, x^{6}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(3/2)/x^6/(-2*x^2+3),x, algorithm="fricas")

[Out]

integral(-(2*x^4 + 2*x^2 + 1)^(3/2)/(2*x^8 - 3*x^6), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (2 \, x^{4} + 2 \, x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (2 \, x^{2} - 3\right )} x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(3/2)/x^6/(-2*x^2+3),x, algorithm="giac")

[Out]

integrate(-(2*x^4 + 2*x^2 + 1)^(3/2)/((2*x^2 - 3)*x^6), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 549, normalized size = 0.99 \[ \frac {206 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{135 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {206 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{135 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {236 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{45 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {206 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{135 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {184 \sqrt {\left (1-i\right ) x^{2}+1}\, \sqrt {\left (1+i\right ) x^{2}+1}\, \EllipticF \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{45 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {578 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (\sqrt {-1+i}\, x , -\frac {1}{3}-\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{81 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {262 \sqrt {2 x^{4}+2 x^{2}+1}}{135 x}-\frac {46 \sqrt {2 x^{4}+2 x^{2}+1}}{135 x^{3}}-\frac {\sqrt {2 x^{4}+2 x^{2}+1}}{15 x^{5}}+\frac {\left (-\frac {52}{15}+\frac {52 i}{15}\right ) \sqrt {\left (1-i\right ) x^{2}+1}\, \sqrt {\left (1+i\right ) x^{2}+1}\, \left (-\EllipticE \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )+\EllipticF \left (\sqrt {-1+i}\, x , \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^4+2*x^2+1)^(3/2)/x^6/(-2*x^2+3),x)

[Out]

-236/45/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF((-1+I)^(1/2)*x,1
/2*2^(1/2)+1/2*I*2^(1/2))+206/135*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2
)*EllipticE((-1+I)^(1/2)*x,1/2*2^(1/2)+1/2*I*2^(1/2))-206/135/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^
(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE((-1+I)^(1/2)*x,1/2*2^(1/2)+1/2*I*2^(1/2))-206/135*I/(-1+I)^(1/2)*(-I*x^2
+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF((-1+I)^(1/2)*x,1/2*2^(1/2)+1/2*I*2^(1/2))+57
8/81/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi((-1+I)^(1/2)*x,-1/
3-1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))-262/135*(2*x^4+2*x^2+1)^(1/2)/x+184/45/(-1+I)^(1/2)*((1-I)*x^2+1)^(1/2)*((1
+I)*x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF((-1+I)^(1/2)*x,1/2*2^(1/2)+1/2*I*2^(1/2))+(-52/15+52/15*I)/(-
1+I)^(1/2)*((1-I)*x^2+1)^(1/2)*((1+I)*x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF((-1+I)^(1/2)*x,1/2*2^(1/2)
+1/2*I*2^(1/2))-EllipticE((-1+I)^(1/2)*x,1/2*2^(1/2)+1/2*I*2^(1/2)))-46/135*(2*x^4+2*x^2+1)^(1/2)/x^3-1/15*(2*
x^4+2*x^2+1)^(1/2)/x^5

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (2 \, x^{4} + 2 \, x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (2 \, x^{2} - 3\right )} x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(3/2)/x^6/(-2*x^2+3),x, algorithm="maxima")

[Out]

-integrate((2*x^4 + 2*x^2 + 1)^(3/2)/((2*x^2 - 3)*x^6), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ -\int \frac {{\left (2\,x^4+2\,x^2+1\right )}^{3/2}}{x^6\,\left (2\,x^2-3\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x^2 + 2*x^4 + 1)^(3/2)/(x^6*(2*x^2 - 3)),x)

[Out]

-int((2*x^2 + 2*x^4 + 1)^(3/2)/(x^6*(2*x^2 - 3)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {\sqrt {2 x^{4} + 2 x^{2} + 1}}{2 x^{8} - 3 x^{6}}\, dx - \int \frac {2 x^{2} \sqrt {2 x^{4} + 2 x^{2} + 1}}{2 x^{8} - 3 x^{6}}\, dx - \int \frac {2 x^{4} \sqrt {2 x^{4} + 2 x^{2} + 1}}{2 x^{8} - 3 x^{6}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**4+2*x**2+1)**(3/2)/x**6/(-2*x**2+3),x)

[Out]

-Integral(sqrt(2*x**4 + 2*x**2 + 1)/(2*x**8 - 3*x**6), x) - Integral(2*x**2*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**8
- 3*x**6), x) - Integral(2*x**4*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**8 - 3*x**6), x)

________________________________________________________________________________________